Supplementary Information:

Size distributions and yields of giant vesicles assembled on cellulose papers and cotton fabric

Joseph Pazzi§, Melissa Xu§, Anand Bala Subramaniam§,*

§ Department of Bioengineering, University of California, Merced, Merced, CA 95343, United States.

Keywords: membranes, liposomes, textiles, synthetic cells, sustainable chemistry, self-assembly, drug delivery
Figure S1: Histograms of fiber diameters measured on bandpass-filtered maximum intensity projections of Direct Red 23 labeled cellulose substrates. n is the number of fibers measured on each substrate.
Figure S2: Quantification of GUV diameters on the cellulose fibers prior to harvesting. a-b)
Representative single plane confocal z-slices of the cellulose paper 60 minutes after incubation in the
growth buffer. GUVs grew in tight clusters on the cellulose fibers. Most GUVs were < 20 µm in
diameter. GUVs larger than the fiber diameters were rare. Resolving GUVs 1- 2 µm in diameter that
clustered close to the fibers was difficult. c) histogram of n = 724 GUVs measured while still attached to
the cellulose fibers. The shape of the distribution was similar to the shape of the distribution of harvested
GUVs. Counts of smaller GUVs were underestimated due to the difficulty in resolving small GUVs on
the fibers. Scale bars a) 50 µm, b) 20 µm.